## Math.tntech.edu

**Practice Problems for Test II **

**Penicillin study. **A biomedical research firm developed a new penicillin manufacturing

process, and offered our company an exclusive right to use their method. The research

firm provided us with their report. The penicillin yield (unit/mg) were measured for seven

types of base blend (B1 to B7) to produce penicillin (see the box plots below). Method I

and II refer respectively to the current method and the new method developed by the

research firm.

**Trout hemoglobin measurement. **The data in the following table show the

measurements of hemoglobin (grams per 100 ml) in the blood of brown trout. The trout

were placed at random in four different troughs. The fish food added to the troughs

contained, respectively, 0, 5, 10, and 15 grams of sulfamerazine per 100 pounds of fish

(coded T1, T2, T3, and T4). The measurements were made on ten randomly selected fish

from each trough after 35 days (see the box plots below).

Given here is the ANOVA table obtained from the measurement data.
5.695543 0.002684745

**Hubble constant. **In 1929 Edwin Hubble investigated the relationship between distance

and velocity of extra-galactic nebulae (celestial objects). He published the data about how

galaxies are moving away from us no matter which direction we look, and hypothesized

the so-called "Hubble's law" as follows:

Velocity = (Hubble's constant) * Distance Given here are the scatter plot with fitted model (below left) and the residual plot (below right) which were produced from 24 data points Hubble published in 1929.
Results of linear regression are summarized in the following table.
test.statistic p.value

**Problem 1. **Currently in making aluminum castings, an average of 3.5 ounces per

casting must be trimmed off and recycled as a raw material. A new manufacturing

procedure has been proposed to reduce the amount of aluminum that must be recycled in

this way. For a sample of 12 castings made with the new process, the following table

shows the summary statistics for the weights of aluminum trimmed and recycled.

1) To test whether the new process reduces the amount of trimmed aluminum, state the

*null* and the

*alternative hypothesis* using the population mean µ of trimmed aluminum from the new procedure. The null hypothesis is µ = 3.5, and the alternative hypothesis is µ < 3.5
2) We conclude that there is no evidence that the new process reduces the amount of
trimmed aluminum. What was your decision regarding the null hypothesis? The null hypothesis could not be rejected.
3) We have chosen the significance level of 0.05. In justifying your answer above, which
of the following is possibly the

*correct* statement about the p-value? (iv) [The finding not to reject the null hypothesis with significance level 0.05 should be implied by (iv).]
p-value is less than 0.01.
p-value is between 0.01 and 0.05
p-value is equal to 0.05.
p-value is greater than 0.05.

**Problem 2. **Answer the following questions regarding penicillin study (see

** Penicillin **

study).

4) Here µ1 and µ2 denote the respective mean penicillin yield from Method I and II. State
the

*null and alternative hypothesis* which is suitable for the purpose of study. The null hypothesis is µ1 = µ2, and the alternative hypothesis is µ1 < µ2. (Or, you may choose the alternative hypothesis that µ1 ≠ µ2.)
5) The penicillin study report says that the p-value is 0.018. State your choice of the
significance level and your finding regarding the

*null hypothesis*. If you choose the significance level 0.01 then we fail to reject the null hypothesis. If you choose the significance level 0.05 or 0.1 then we reject the null hypothesis.
6) Write your own conclusion for the study in a way consistent with the previous answer.
Do not use statistical terms in your conclusion. The result with significance level 0.01 indicates no evidence regarding the benefit of new method. The result with significance level 0.05 or 0.1 indicates some benefit of adapting the new method.

**Problem 3.** A study compares hospital stays (in days) between HMO (health-

maintenance organization) patients and non-HMO patients, and the summary statistics

are obtained. A researcher is interested in whether the average length of hospital stays (in

days) are different between the two groups.

Here µ1 and µ2 denote the respective mean hospital stay for HMO and non-HMO. 7) State the

*null and alternative hypothesis* to investigate the researcher's inquiry. The
null hypothesis is µ1 = µ2, and the alternative hypothesis is µ1 ≠ µ2
8) The result of test shows that the p-value is 0.005. State your choice of the
significance level, and explain your finding regarding the null hypothesis. The null hypothesis is rejected.
9) Write your own conclusion for the researcher's inquiry. Do not use statistical terms in
your conclusion. There is a difference in hospital stay between the two groups. Since (i) the difference is statistically significant and (ii) HMO has the shorter average stay, HMO does a better job by managing a shorter hospital stay.

**Problem 4. **Answer the following questions regarding trout hemoglobin (see

**Trout **

hemoglobin measurement).

10) The researchers want to determine whether sulfamerazine has any effect on the
hemoglobin content of trout blood. Write your observation based on the box plots in

**Data sheet**. The box plots indicate that there is no particular trend. Hemoglobin

measurements are the lowest when no sulfamerazine was added. But the initially high

measurement of hemoglobin decreases as the content of sulfamerazine increases.

Overall, it suggests some effect on the hemoglobin level caused by sulfamerazine.

11) Write their

*null* and

*alternative hypothesis*. The null hypothesis is that all the groups
have the same mean value, and the alternative hypothesis is that their mean values are different.
12) Explain how ANOVA table would help you find a result regarding the hypothesis
test. According to the ANOVA table the ratio of mean squares (MS) is 5.7. The ratio 5.7 is high enough to suggest that the hemoglobin measurements of individual groups are different. Furthermore, the p-value 0.0027 indicates the rejection of null hypothesis, and provides statistical evidence for the observation made initially.
13) Choose the significance level of your own, and state the result regarding the

*null *
*hypothesis*. Since the p-value is very small, the null hypothesis can be rejected.
14) Write your finding for general audience. Do not use statistical terms in your
conclusion. We can conclude that sulfamerazine additive makes a difference in hemoglobin level of brown trout, and therefore, that sulfamerazine has some effect on the hemoglobin content.

**Problem 5. **Answer the following questions regarding the distance and the velocity of

extra-galactic nebulae (celestial objects). (see

**Hubble constant**).

15) Which variable, Velocity or Distance, should be the explanatory variable? Distance. 16) We test the null hypothesis that the slope is zero. What should you find about the
null hypothesis? Choose the significance level and justify your answer. The p-value of 4.5×10-6 is very small and the null hypothesis must be rejected.
17) The test was two-sided. Can you support that there is a positive relationship between
the distance and the velocity of extra-galactic nebulae? Justify your answer. Since (i) the slope should not be zero by the hypothesis test and (ii) the estimated slope of 454.2 is positive, there is a positive correlation.
18) We tested the null hypothesis that the intercept is zero, and obtained the p-value of
0.63. What should you find about the null hypothesis? Choose the significance level and justify your answer. Since the p-value is quite large, we cannot reject the null hypothesis, suggesting that the intercept could be zero.
19) Does the Hubble's law seem appropriate from the data? Justify your answer. Since
we have failed to reject the null hypothesis that the intercept could be zero, we find no evidence to reject the (null) hypothesis that the intercept is zero. That is, there is no evidence against the Hubble's law asserting the intercept being zero.
20) We have obtained the 95% confidence interval (302, 562) for the slope. The
Hubble's constant is now thought to be about 75. Does the data published in 1929 support this Hubble's constant up to date? Justify your answer. No, since the confidence interval (302, 562) for the slope does not contain the value 75.

Source: https://math.tntech.edu/e-stat/practice02.pdf

SK is happy to present the Annual Report for the year 2010. The report endeavors to communicate to the readers the tasks accomplished by the organization over the defined period, the challenges met and Aalso the emerging issues it had to deal with. Needless to say it would not have been possible to achieve many of the goals without the assistance provided by different sections of people. Planning, Monitoring and Evaluation unit of ASK prepared the report by collecting and compiling information from different programmes. All the staff including the Executive Director and members went through the draft and commented upon it. ASK

Supplemental Material can be found at: 0022-3565/10/3322-569–577$20.00THE JOURNAL OF PHARMACOLOGY AND EXPERIMENTAL THERAPEUTICS Copyright © 2010 by The American Society for Pharmacology and Experimental Therapeutics JPET 332:569–577, 2010 Printed in U.S.A. Cannabidiol Displays Antiepileptiform and AntiseizureProperties In Vitro and In Vivo□S Nicholas A. Jones, Andrew J. Hill, Imogen Smith, Sarah A. Bevan, Claire M. Williams,Benjamin J. Whalley, and Gary J. Stephens